Máquina de vapor:
- Se genera vapor de agua por el calentamiento en una caldera cerrada herméticamente, lo cual produce la expansión del volumen de un cilindro empujando un pistón. Mediante un mecanismo de biela-manivela, el movimiento lineal alternativo del pistón del cilindro se transforma en un movimiento de rotación que acciona, por ejemplo, las ruedas de una locomotora o el rotor de un generador eléctrico. Una vez alcanzado el final de carrera el émbolo retorna a su posición inicial y expulsa el vapor de agua utilizando la energía cinética de un volante de inercia.
- El vapor a presión se controla mediante una serie de válvulas de entrada y salida que regulan la renovación de la carga; es decir, los flujos del vapor hacia y desde el cilindro.
En la máquina de vapor se basa la Primera Revolución Industrial que, desde fines del siglo XVIII en Inglaterra y hasta casi mediados del siglo XIX, aceleró portentosamente el desarrollo económico de muchos de los principales países de la Europa Occidental y de los Estados Unidos. Solo en la interfase que medió entre 1890 y 1930 la máquina a vapor impulsada por hulla dejó lugar a otros motores de combustión interna: aquellos impulsados por hidrocarburos derivados del petróleo.
Muchos han sido los autores que han intentado determinar la fecha de la invención de la máquina de vapor atribuyéndola a tal o cual inventor; intento que había sido en vano, ya que la historia de su desarrollo estaba plagada de nombres propios. Desde la recopilación de Herón hasta la sofisticada máquina de James Watt, son multitud las mejoras que en Inglaterra y especialmente en el contexto de una incipiente Revolución Industrial en los siglos XVII y XVIII condujeron sin solución de continuidad desde los rudimentarios primeros aparatos sin aplicación práctica a la invención del motor universal que llegó a implantarse en todas las industrias y a utilizarse en el transporte, desplazando los tradicionales motores, como el animal de tiro, el molino o la propia fuerza del hombre. Jerónimo de Ayanz y Beaumont, militar, pintor, cosmógrafo y músico, pero, sobre todo, inventor español registró en 1606 la primera patente de una máquina de vapor moderna, por lo que se le puede atribuir la invención de la máquina de vapor. El hecho de que el conocimiento de esta patente sea bastante reciente hace que este dato lo desconozca la gran mayoría de la gente.
Un dirigible es un aerostato autopropulsado y con capacidad de maniobra para ser manejado como una aeronave.[1] [2] La sustentación aerostática se logra mediante depósitos llenos de un gas de menor densidad a la atmósfera circundante. Difiere de la sustentación aerodinámica, obtenida mediante el movimiento rápido de un perfil alar, como en el ala de un aeroplano o las aspas de un helicóptero.
Fue el primer artefacto volador capaz de ser controlado en un vuelo de larga duración. Su uso principal tuvo lugar aproximadamente entre 1900 y la década de 1930, para disminuir paulatinamente cuando los aeroplanos superaron sus capacidades y tras haber sufrido varios accidentes de relevancia; el más notable de los cuales fue sin duda el incendio del Hindenburg.[3] Actualmente se los utiliza en una serie de aplicaciones secundarias, especialmente publicidad.
Tipos de dirigible

- Dirigible rígido: se caracterizan por poseer una estructura rígida que sostiene múltiples celdas o globos de gas no presurizado, por lo tanto, no dependen de la presión interna del gas para mantener su forma. Ejemplo: los Zeppelin.
- Dirigible semirrígido: requieren una presión interna generalmente menor, ya que incluyen estructuras bajo el globo que permiten distribuir las cargas. El uso ha sido similar al de los dirigibles flexibles.
- Dirigible flexible: utilizan la presión del gas interno para retener su forma. Pueden ser globos de observación, balizamiento o exploración que se diferencian de los aerostatos por la posibilidad de dirigir su movimiento horizontal, ya sea mediante hélices u otros mecanismos.
- Dirigibles con membrana metálica: reúnen las características de los dirigibles rígidos y de los flexibles, mediante la utilización de una envoltura metálica muy fina en lugar de tela plastificada. Solo se han construido dos dirigibles de este tipo: el dirigible de Schwarz de 1897 y el ZMC-2.
- Dirigibles híbridos: con este nombre se designan los aparatos que combinan características de las aeronaves (más pesadas que el aire atmosférico) con tecnologías de disminución del peso. Ejemplos de esto son algunos experimentos de híbridos helicóptero-dirigible, probados para la carga en crucero de largo alcance. Debe hacerse notar que la mayoría de los dirigibles son más pesados que el aire cuando están a plena carga, por lo que deben usar sus sistemas de propulsión y forma aerodinámica para lograr la sustentación. Esta circunstancia los convierte técnicamente en artefactos híbridos. Sin embargo la tipología concreta se refiere a aquellos que obtienen una parte significativa de su sustentación gracias a los perfiles alares, que suelen precisar una potencia considerable para el despegue.
Sustentación
En los primeros tiempos de los dirigibles el principal gas de sustentación utilizado fue el hidrógeno, en cambio en Estados Unidos se usó helio. Es más, hasta 1950 se continuó utilizando el hidrógeno en todo el mundo por diversas razones: menor densidad que el helio,[4] incapacidad para obtenerlo fuera de Norteamérica (hasta ese momento único productor) y además por cuestiones económicas, al ser mayor el precio del helio.El hidrógeno es extremadamente inflamable, característica que causó el desastre del Hindenburg, así como otros accidentes (si bien hay teorías recientes que exculpan al hidrógeno de la causa de ese desastre –ver más abajo–). La sustentación que provee el hidrógeno es sin embargo sólo un 8 % mayor que la del helio.[5] Con el tiempo, el balance entre coste y seguridad se ha inclinado definitivamente por el uso del helio.
Los dirigibles norteamericanos se llenaban con helio desde la década de 1920, y los artefactos modernos tienen prohibido por ley llenarse con hidrógeno. A pesar de ello, algunos pequeños dirigibles experimentales, usan todavía hidrógeno.
Algunos aparatos pequeños, llamados dirigibles térmicos, se llenan con aire caliente de forma similar a los aerostatos.
Entre los gases disponibles más ligeros que el aire,[6] la mayoría[7] de ellos son tóxicos, inflamables, corrosivos, o con varias de estas características a la vez. Las excepciones son el helio, el neón y el vapor de agua.
Tanto el metano como el amoníaco se han utilizado puntualmente en globos experimentales. Y también se ha usado de forma aislada el vapor de agua en los dirigibles.

Se denomina telescopio (del prefijo tele- y el sufijo -scopio, y estos del prefijo griego τηλε- [tele-], ‘lejos’, y la raíz griega σκοπ- [skop-], ‘ver’)[1] al instrumento óptico que permite ver objetos lejanos con mucho más detalle que a simple vista al captar radiación electromagnética, tal como la luz. Es una herramienta fundamental en astronomía, y cada desarrollo o perfeccionamiento de este instrumento ha permitido avances en nuestra comprensión del Universo.
Gracias al telescopio —desde que Galileo Galilei en 1610 lo usó para mirar la Luna, el planeta Júpiter y las estrellas— el ser humano pudo, por fin, empezar a conocer la verdadera naturaleza de los cuerpos celestes que nos rodean y nuestra ubicación en el universo.
Históricamente, se atribuye su invención a Hans Lippershey en el año 1592, un fabricante de lentes alemán, pero recientes investigaciones del informático Nick Pelling divulgadas en la revista británica History Today,[2] atribuyen la autoría a un gerundense llamado Juan Roget en 1590, cuyo invento habría sido copiado (según esta investigación) por Zacharias Janssen, quien el día 17 de octubre (dos semanas después de que lo patentara Lippershey) intentó patentarlo. Poco antes, el día 14, Jacob Metius también había intentado patentarlo. Fueron estos hechos los que despertaron las suspicacias de Nick Pelling quien, basándose en las pesquisas de José María Simón de Guilleuma (1886-1965), sugiere que el legítimo inventor fue Juan Roget. En varios países se ha difundido la idea errónea de que el inventor fue el holandés Christiaan Huygens, quien nació mucho tiempo después.
Galileo Galilei, al recibir noticias de este invento, decidió diseñar y construir uno. En 1609 mostró el primer telescopio astronómico registrado. Gracias a él, hizo grandes descubrimientos en astronomía, entre los que destaca la observación, el 7 de enero de 1610, de cuatro de las lunas de Júpiter girando en una órbita en torno a este planeta.
Conocido hasta entonces como la lente espía, el nombre «telescopio» fue propuesto por el matemático griego Giovanni Demisiani el 14 de abril de 1611, durante una cena en Roma en honor de Galileo, una reunión en la que los asistentes pudieron observar las lunas de Júpiter por medio del aparato que el célebre astrónomo había traído consigo.
Existen varios tipos de telescopio: refractores, que utilizan lentes; reflectores, que tienen un espejo cóncavo en lugar de la lente del objetivo, y catadióptricos, que poseen un espejo cóncavo y una lente correctora que sostiene además un espejo secundario. El telescopio reflector fue inventado por Isaac Newton en 1688 y constituyó un importante avance sobre los telescopios de su época al corregir fácilmente la aberración cromática característica de los telescopios refractores.
Características
El parámetro más importante de un telescopio es el diámetro de su «lente objetivo». Un telescopio de aficionado generalmente tiene entre 76 y 150 mm de diámetro y permite observar algunos detalles planetarios y muchos objetos del cielo profundo (cúmulos, nebulosas y algunas galaxias). Los telescopios que superan los 200 mm de diámetro permiten ver detalles lunares finos, detalles planetarios importantes y una gran cantidad de cúmulos, nebulosas y galaxias brillantes.Para caracterizar un telescopio y utilizarlo se emplean una serie de parámetros y accesorios:
- Distancia focal: es la longitud focal del telescopio, que se define como la distancia desde el espejo o la lente principal hasta el foco o punto donde se sitúa el ocular.
- Diámetro del objetivo: diámetro del espejo o lente primaria del telescopio.
- Ocular: accesorio pequeño que colocado en el foco del telescopio permite magnificar la imagen de los objetos.
- Lente de Barlow: lente que generalmente duplica o triplica los aumentos del ocular cuando se observan los astros.
- Filtro: pequeño accesorio que generalmente opaca la imagen del astro pero que dependiendo de su color y material permite mejorar la observación. Se ubica delante del ocular, y los más usados son el lunar (verde-azulado, mejora el contraste en la observación de nuestro satélite), y el solar, con gran poder de absorción de la luz del Sol para no lesionar la retina del ojo.
- Razón Focal: es el cociente entre la distancia focal (mm) y el diámetro (mm). (f/ratio)
- Magnitud límite: es la magnitud máxima que teóricamente puede observarse con un telescopio dado, en condiciones de observación ideales. La fórmula para su cálculo es: m(límite) = 6,8 + 5log(D) (siendo D el diámetro en centímetros de la lente o el espejo del telescopio).
- Aumentos: Es la cantidad de veces que un instrumento multiplica el tamaño aparente de los objetos observados. Equivale a la relación entre la longitud focal del telescopio y la longitud focal del ocular (DF/df). Por ejemplo, un telescopio de 1000 mm de distancia focal, con un ocular de 10mm de df. proporcionará un aumento de 100 (se expresa también como 100X).
- Trípode: conjunto de tres patas generalmente metálicas que le dan soporte y estabilidad al telescopio.
- Portaocular: orificio donde se colocan el ocular, reductores o multiplicadores de focal (p. ej. lentes de Barlow) o fotográficas.
Monturas
Una montura de telescopio sencilla es la montura altitud-azimut o altazimutal. Es similar a la de un teodolito. Una parte gira en acimut (en el plano horizontal), y otro eje sobre esta parte giratoria permite además variar la inclinación del telescopio para cambiar la altitud (en el plano vertical). Una montura Dobson es un tipo de montura altazimutal que es muy popular dado que resulta sencilla y barata de construir.
El ferrocarril (del latín: ferrum,[1] ‘hierro’, y carril) o transporte ferroviario es un sistema de transporte de personas y mercancías guiado sobre una via férrea.
Aunque normalmente se entiende que los carriles o rieles son de acero o hierro, que hacen el camino o vía férrea sobre la cual circulan los trenes, dentro de esta clasificación se incluyen medios de transporte que emplean otros tipos de guiado, tales como los trenes de levitación magnética.
Se trata de un transporte con ventajas comparativas en ciertos aspectos, tales como el consumo de combustible por tonelada/kilómetro transportada, la entidad del impacto ambiental que causa o la posibilidad de realizar transportes masivos, que hacen relevante su uso en el mundo moderno.
Líneas de ferrocarril



Los ferrocarriles comenzaron a reaparecer en Europa tras la Alta Edad Media. La primera noticia sobre un ferrocarril en el continente europeo en este periodo aparece en una vidriera en la catedral de Friburgo de Brisgovia en torno a 1350.[3] En 1515, el cardenal Matthäus Lang describió un funicular en el castillo de Hohensalzburg (Austria) llamado «Reisszug». La línea utilizaba carriles de madera y se accionaba mediante una cuerda de cáñamo movida por fuerza humana o animal. La línea continúa funcionando actualmente, aunque completamente sustituida por material moderno, siendo una de las líneas más antiguas que aún están en servicio.[4] [5]
A partir de 1550, las líneas de vía estrecha con carriles de madera empezaron a generalizarse en las minas europeas.[6] Durante el siglo XVII los vagones de madera trasladaban el mineral desde el interior de las minas hasta canales donde se trasbordaba la carga al transporte fluvial. La evolución de estos sistemas llevó a la aparición del primer tranvía permanente en 1810, el «Leiper Railroad» en Pensilvania.[7]
El primer ferrocarril propiamente tal (esto es, fabricado con hierro) estaba formado por un cuerpo de madera recubierto por una chapa, y fue fabricado en 1768.[8] Esto permitió la elaboración de aparatos de vía más complejos. En un principio solo existían lazos de final de línea para invertir las composiciones, pero pronto aparecieron los cambios de agujas.[9] A partir de 1790 se utilizaron los primeros carriles de acero completo en Reino Unido.[10] En 1803, William Jessop inauguró la línea «Surrey Iron Railway» al sur de Londres, siendo el primer ferrocarril público tirado por caballos.[11] La invención del hierro forjado en 1820 permitió superar los problemas de los primeros carriles de hierro, que eran frágiles y cortos, aumentando su longitud a 15 metros.[12] En 1857 comenzaron a fabricarse carriles de acero definitivamente.[10]
La era del vapor



En 1811, John Blenkinsop diseñó la primera locomotora funcional que se presentó en la línea entre Middleton y Leeds. La locomotora, denominada Salamanca, se construyó en 1812.[17] En 1825, George Stephenson construyó la Locomotion para la línea entre Stockton y Darlington, al noreste de Inglaterra, que fue la primera locomotora de vapor que arrastró trenes de transporte público. En 1829 también construyó la locomotora The Rocket. El éxito de estas locomotoras llevó a Stephenson a crear la primera compañía constructora de locomotoras de vapor que fueron utilizadas en las líneas de Europa y Estados Unidos.[17]
En 1830 se inauguró la primera línea de ferrocarril interurbano, la línea entre Liverpool y Mánchester. La vía utilizada era del mismo tipo que otras anteriores, como la del ferrocarril entre Stockton y Darlington.[18] Su ancho era de 1.435 mm, actualmente conocido como ancho internacional ya que es utilizado por aproximadamente el 60% de los ferrocarriles actuales. El mismo año se inauguró el primer tramo de la línea entre Baltimore y Ohio, la primera en unir líneas individuales en una red.[19]
En los años siguientes, el éxito de las locomotoras de vapor hizo que las líneas de ferrocarril y las locomotoras se extendieran por todo el mundo.
Electrificación y dieselización


La primera línea de ferrocarril convencional electríficada fue la línea Roslag en Suecia. En la década de 1890 algunas grandes ciudades, como Londres, París y México, utilizaron esta nueva técnica para construir líneas de metro urbanas. En ciudades medias, los tranvías se hicieron algo común y fueron el único medio de transporte público durante varias décadas. Todas estas líneas utilizaron corriente continua, y la primera línea que utilizó corriente alterna fue inaugurada en Austria en 1904.[21]
Las locomotoras de vapor necesitan un mantenimiento bastante elevado para funcionar. Tras la Segunda Guerra Mundial, los costes de personal se incrementaron de modo muy importante, lo que hizo que la tracción a vapor se encareciera sobre el resto. Al mismo tiempo, la guerra impulsó el desarrollo de los motores de combustión interna, que hicieron a las locomotoras diésel más baratas y potentes. Esto causó que varias compañías ferroviarias iniciaran programas para convertir todas sus locomotoras para líneas no electrificadas en locomotoras diésel.
Como consecuencia de la producción a gran escala de autovías tras la guerra, el transporte por ferrocarril se hizo menos popular, y el transporte aéreo comenzó a ocupar el mercado de los viajes de muy larga distancia. Muchos tranvías fueron sustituidos por autobuses, mientras que la necesidad de trasbordos hizo poco rentable el traslado de mercancías en distancias medias. Además, sucesos como el Gran escándalo del tranvía de Estados Unidos hicieron que el transporte por ferrocarril se redujera considerablemente.
En 1964, se inauguró en Japón la primera línea de Alta velocidad ferroviaria, llamado Shinkansen, tren bala, para resolver el problema de transporte entre las pobladas ciudades del país. Con el tiempo, este sistema se extendió por otros países, como Francia, España y Alemania, lo que hizo recuperar al viajero interurbano.
La crisis del petróleo de 1973 cambió la tendencia a la baja de los tranvías. Hizo que los que no se habían desmantelado, continúasen hasta nuestros días, al ser de nuevo más rentables. También la introducción de los contenedores contribuyó a mejorar la rentabilidad del transporte de mercancías.
Innovación
A lo largo de los años 70, se introdujo una automatización mayor, especialmente en el transporte interurbano, reduciendo los costes de operación. Algunas líneas de tranvía fueron transformadas en líneas de tren ligero, otras líneas se construyeron en ciudades que habían eliminado el tranvía décadas atrás. En los años 90, el foco de atención se situó en mejorar la accesibilidad, convirtiendo el tren en la solución al transporte de los discapacitados.La innovación en nuevos sistemas de ferrocarril continúan actualmente, especialmente en campos como la alta velocidad.
La computadora[1] [2] (del inglés: computer; y este del latín: computare, 'calcular'), también denominada computador[3] [1] u ordenador[4] [5] (del francés: ordinateur; y éste del latín: ordinator), es una máquina electrónica que recibe y procesa datos para convertirlos en información conveniente y útil. Un ordenador está formado, físicamente, por numerosos circuitos integrados y otros muchos componentes de apoyo, extensión y accesorios, que en conjunto pueden ejecutar tareas diversas con suma rapidez y bajo el control de un programa.
Dos partes esenciales la constituyen, el hardware, que es su composición física (circuitos electrónicos, cables, gabinete, teclado, etcétera) y su software, siendo ésta la parte intangible (programas, datos, información, etc.). Una no funciona sin la otra.
Desde el punto de vista funcional es una máquina que posee, al menos, una unidad central de procesamiento, una memoria principal y algún periférico o dispositivo de entrada y otro de salida. Los dispositivos de entrada permiten el ingreso de datos, la CPU se encarga de su procesamiento (operaciones aritmético-lógicas) y los dispositivos de salida los comunican a otros medios. Es así, que la computadora recibe datos, los procesa y emite la información resultante, la que luego puede ser interpretada, almacenada, transmitida a otra máquina o dispositivo o sencillamente impresa; todo ello a criterio de un operador o usuario y bajo el control de un programa.
El hecho de que sea programable, le posibilita realizar una gran diversidad de tareas, esto la convierte en una máquina de propósitos generales (a diferencia, por ejemplo, de una calculadora cuyo único propósito es calcular limitadamente). Es así que, sobre la base de datos de entrada, puede realizar operaciones y resolución de problemas en las más diversas áreas del quehacer humano (administrativas, científicas, de diseño, ingeniería, medicina, comunicaciones, música, etc), incluso muchas cuestiones que directamente no serían resolubles o posibles sin su intervención.
Básicamente, la capacidad de una computadora depende de sus componentes hardware, en tanto que la diversidad de tareas radica mayormente en el software que admita ejecutar y contenga instalado.
Si bien esta máquina puede ser de dos tipos diferentes, analógica o digital, el primer tipo es usado para pocos y muy específicos propósitos; la más difundida, utilizada y conocida es la computadora digital (de propósitos generales); de tal modo que en términos generales (incluso populares), cuando se habla de "la computadora" se está refiriendo a computadora digital. Las hay de arquitectura mixta, llamadas computadoras híbridas, siendo también éstas de propósitos especiales.
En la Segunda Guerra mundial se utilizaron computadoras analógicas mecánicas, orientadas a aplicaciones militares, y durante la misma se desarrolló la primera computadora digital, que se llamó ENIAC; ella ocupaba un enorme espacio y consumía grandes cantidades de energía, que equivalen al consumo de cientos de computadores actuales (PC’s).[6] Los computadores modernos están basados en circuitos integrados, miles de millones de veces más veloces que las primeras máquinas, y ocupan una pequeña fracción de su espacio. [7]
Computadoras simples son lo suficientemente pequeñas para residir en los dispositivos móviles. Las computadoras portátiles, tales como tabletas, netbooks, notebooks, ultrabooks, pueden ser alimentadas por pequeñas baterías. Computadoras personales en sus diversas formas son iconos de la Era de la información y son lo que la mayoría de la gente considera como "ordenador". Sin embargo, los ordenadores integrados se encuentran en muchos dispositivos actuales, tales como reproductores MP4; teléfonos celulares; aviones de combate, y, desde juguetes hasta robot industriales.

El teléfono es un dispositivo de telecomunicación diseñado para transmitir señales acústicas a distancia por medio de señales eléctricas.
Durante mucho tiempo Alexander Graham Bell fue considerado el inventor del teléfono, junto con Elisha Gray. Sin embargo, Bell no fue el inventor de este aparato, sino solamente el primero en patentarlo. Esto ocurrió en 1876. El 11 de junio de 2002 el Congreso de Estados Unidos aprobó la resolución 269, que se reconocía que el inventor del teléfono había sido Antonio Meucci, que lo llamó teletrófono, y no Bell.[1]
En 1871 Meucci solo pudo, por dificultades económicas, presentar una breve descripción de su invento, pero no formalizar la patente ante la Oficina de Patentes de Estados Unidos.
Alrededor del año 1857, Antonio Meucci construyó un teléfono para conectar su oficina con su dormitorio, ubicado en el segundo piso, debido al reumatismo de su esposa.[2] Sin embargo carecía del dinero suficiente para patentar su invento, por lo que lo presentó a una empresa (Western Union, quienes promocionaron el «invento» de Graham Bell) que no le prestó atención, pero que tampoco le devolvió los materiales.
En 1876, tras haber descubierto que para transmitir voz humana solo se podía utilizar una corriente continua, el inventor escocés nacionalizado en EE. UU. Alexander Graham Bell construyó y patentó unas horas antes que su compañero Elisha Gray el primer teléfono capaz de transmitir y recibir voz humana con toda su calidad y timbre. Tampoco se debe dejar de lado a Thomas Alva Edison, que introdujo notables mejoras en el sistema, entre las que se encuentra el micrófono de gránulos de carbón.
El 11 de junio de 2002, el Congreso de los Estados Unidos aprobó la resolución 269 por la que reconoció que el inventor del teléfono había sido Antonio Meucci y no Alexander Graham Bell. En la resolución, aprobada por unanimidad, los representantes estadounidenses estiman que «la vida y obra de Antonio Meucci debe ser reconocida legalmente, y que su trabajo en la invención del teléfono debe ser admitida». Según el texto de esta resolución, Meucci instaló un dispositivo rudimentario de telecomunicaciones entre el sótano de su casa de Staten Island (Nueva York) y la habitación de su mujer, en la primera planta.
Evolución del teléfono y su utilización[editar]
En lo que se refiere al propio aparato telefónico, se pueden señalar varias cosas:
- La introducción del micrófono de carbón, que aumentaba de forma considerable la potencia emitida, y por tanto el alcance máximo de la comunicación.
- El dispositivo antilocal Luink, para evitar la perturbación en la audición causada por el ruido ambiente del local donde está instalado el teléfono.
- La marcación por pulsos mediante el denominado disco de marcar.
- La marcación por tonos multifrecuencia.
- La introducción del micrófono electret o electret, micrófono de condensador, prácticamente usado en todos los aparatos modernos, que mejora de forma considerable la calidad del sonido.
- La telefonía fija o convencional, que es aquella que hace referencia a las líneas y equipos que se encargan de la comunicación entre terminales telefónicos no portables, y generalmente enlazados entre ellos o con la central por medio de conductores metálicos.
- La central telefónica de conmutación manual para la interconexión mediante la intervención de un operador/a de distintos teléfonos (Harlond)[cita requerida], creando de esta forma un primer modelo de red. Primeramente fueron las centrales manuales de batería local (teléfonos alimentados por pilas o baterías) y posteriormente fueron las centrales manuales de batería central (teléfonos alimentados desde la central).
- La introducción de las centrales telefónicas de conmutación automática, constituidas mediante dispositivos electromecánicos, de las que han existido, y en algunos casos aún existen, diversos sistemas:sistema de conmutación rotary (en España sistemas 7A1, 7A2, 7D, 7BR, AGF), y sistema con conmutador de barras cruzadas (En España: Sistemas Pentaconta 1000, PC32, ARF) y otros más complejos.
- Las centrales de conmutación automática electromecánicas, pero controladas por computadora (En España: Sistema MORE). También llamadas centrales semielectrónicas (en España: sistemas Pentaconta 2000, Metaconta, ARE).
- Las centrales digitales de conmutación automática totalmente electrónicas y controladas por ordenador, la práctica totalidad de las actuales, que permiten multitud de servicios complementarios al propio establecimiento de la comunicación (los denominados servicios de valor añadido). En España: Sistemas AXE (de Ericsson), Sistema 12 o 1240 (Alcatel) y sistema 5ESS (Lucent).
- La introducción de la Red Digital de Servicios Integrados (RDSI) y las técnicas DSL o de banda ancha (ADSL, HDSL, etc,), que permiten la transmisión de datos a más alta velocidad.
- La telefonía móvil o celular, que posibilita la transmisión inalámbrica de voz y datos, pudiendo ser estos a alta velocidad en los nuevos equipos de tercera generación.

Un avión (del francés avion,[1] y este como forma aumentativa del latín avis, ave), también denominado aeroplano, es un aerodino de ala fija, o aeronave con mayor densidad que el aire, dotado de alas y un espacio de carga capaz de volar, impulsado por ninguno, uno o más motores. Los aeroplanos incluyen a los monoplanos, biplanos y triplanos. Los aeroplanos sin motor se han mantenido desde los inicios de la aviación para aviación deportiva y en la segunda guerra mundial para transporte de tropas, se denominan planeadores o veleros.
Según la definición de la OACI, es un «Aerodino propulsado por motor, que debe su sustentación en vuelo principalmente a reacciones aerodinámicas ejercidas sobre superficies que permanecen fijas en determinadas condiciones de vuelo.»[2]
Pueden clasificarse por su uso como aviones civiles (que pueden ser de carga, transporte de pasajeros, entrenamiento, sanitarios, contra incendios, etc.) y aviones militares (carga, transporte de tropas, cazas, bombarderos, de reconocimiento o espías, de reabastecimiento en vuelo, etc.).
También pueden clasificarse en función de su planta motriz; aviones propulsados por motores a pistón, motores a reacción (turborreactor, turborreactor de doble flujo, turbohélice, etc.) o propulsores (cohetes).
Su principio de funcionamiento se basa en la fuerza aerodinámica que se genera sobre las alas, en sentido ascendente, llamada sustentación. Esta se origina por la diferencia de presiones entre la parte superior e inferior del ala, producida por la forma del perfil alar.
El sueño de volar se remonta a la prehistoria. Muchas leyendas y mitos de la antigüedad cuentan historias de vuelos como el caso griego del vuelo de Ícaro. Leonardo da Vinci, entre otros inventores visionarios, diseñó un Avión, en el siglo XV. Con el primer vuelo realizado por el ser humano por François de Rozier y el marqués de Arlandes(en 1783) en un aparato más liviano que el aire, un globo de papel construido por los hermanos Montgolfier, lleno de aire caliente, el mayor desafío pasó a ser la construcción de una máquina más pesada que el aire, capaz de alzar vuelo por sus propios medios.
Años de investigaciones por muchas personas ansiosas de conseguir esa proeza, generaron resultados débiles y lentos, pero continuados. El 28 de agosto de 1883, John Joseph Montgomery fue la primera persona en realizar un vuelo controlado con una máquina más pesada que el aire, un planeador. Otros investigadores que hicieron vuelos semejantes en aquella época fueron Otto Lilienthal, Percy Pilcher y Octave Chanute.
Sir George Cayley, que sentó las bases de la aerodinámica, ya construía y hacía volar prototipos de aeronaves de ala fija desde 1803, y consiguió construir un exitoso planeador con capacidad para transportar pasajeros en 1853, aunque debido a que no poseía motores no podía ser calificado de avión.
El primer avión propiamente dicho fue creado por Clément Ader, el 9 de octubre de 1890 consigue despegar y volar 50 m con su Éole. Posteriormente repite la hazaña con el Avión II que vuela 200 m en 1892 y el Avión III que en 1897 vuela una distancia de más de 300 m. El vuelo del Éole fue el primer vuelo autopropulsado de la historia de la humanidad, y es considerado como la fecha de inicio de la aviación en Europa.
Según la Fédération Aéronautique Internationale (FAI), el 17 de diciembre de 1903, los hermanos Wright realizaron «el primer vuelo sostenido y controlado de un aerodino impulsado por un motor»[3] durante 12 segundos y en el que recorrieron unos 36,5 metros.[4]
Unos años más tarde, el 23 de noviembre de 1906, el brasileño Santos Dumont fue el primer hombre en despegar a bordo de un avión impulsado por un motor aeronáutico, estableciendo así el primer récord mundial reconocido por el Aéro-Club de France[5] al volar 220 m en menos de 22 segundos.[6] Voló una altura de 2 a 3 metros del suelo con su 14-bis, en el campo de Bagatelle en París.[7] Santos Dumont fue así la primera persona en realizar un vuelo en una aeronave más pesada que el aire por medios propios, ya que el Kitty Hawk de los hermanos Wright necesitó de una catapulta hasta 1908.
En 1911 aparece el primer hidroavión gracias al estadounidense Glen H. Curtiss; en 1913 el primer cuatrimotor, el «Le Grand», diseñado por el ruso Ígor Sikorski y en 1912, Juan Guillermo Villasana crea la hélice Anáhuac, fabricada de madera.[8]
Tras la Primera Guerra Mundial, los ingenieros entendieron, que el rendimiento de la hélice tenía su límite y comenzaron a buscar un nuevo método de propulsión para alcanzar mayores velocidades. En 1930, Frank Whittle patenta sus primeros motores de turbina de compresor centrífugo y Hans von Ohain hace lo propio en 1935 con sus motores de compresor axial de turbina. En Alemania, el 27 de agosto de 1939 despega el HE-178 de Heinkel que montaba un motor de Ohain, realizando el primer vuelo a reacción pura de la historia.

El término automóvil (del griego αὐτο "uno mismo", y del latín mobĭlis "que se mueve") se utiliza por antonomasia para referirse a los automóviles de turismo.[1] En una definición más genérica, se refiere a un vehículo autopropulsado destinado al transporte de personas o mercancías sin necesidad de carriles.[1] Existen diferentes tipos de automóviles, como camiones, autobuses,[2] furgonetas,[3] motocicletas,[4] motocarros o cuatriciclos.
El primer automóvil con motor de combustión interna se atribuye a Karl Friedrich Benz en la ciudad de Mannheim en 1886 con el modelo Benz Patent-Motorwagen.[5] Poco después, otros pioneros como Gottlieb Daimler y Wilhelm Maybach presentaron sus modelos. El primer viaje largo en un automóvil lo realizó Bertha Benz en 1888 al ir de Mannheim a Pforzheim, ciudades separadas entre sí por unos 105 km.[6] Cabe destacar que fue un hito en la automovilística antigua, dado que un automóvil de esta época tenía como velocidad máxima unos 20 km/h, gastaba muchísimo más combustible de lo que gasta ahora un vehículo a esa misma velocidad y la gasolina se compraba en farmacias, donde no estaba disponible en grandes cantidades.[cita requerida]
El 8 de octubre de 1908, Henry Ford comenzó a producir automóviles en una cadena de montaje con el Ford modelo T, lo que le permitió alcanzar cifras de fabricación hasta entonces impensables. Ford aprovechó el empuje de la Revolución industrial y comenzó a fabricar el Modelo T, en serie, esto era algo nunca antes visto ya que previamente todos los automóviles se fabrican a mano, con un proceso artesanal que requería de mucho tiempo. La línea de ensamble de Ford le permitió fabricar los Modelo T durante casi veinte años, en los cuales produjo quince millones de ejemplares.

Un satelite meteorológico es un tipo de satélite artificial que se utiliza principalmente para supervisar el tiempo atmosférico y el clima de la Tierra. Sin embargo, ven más que las nubes, las luces de la ciudad, fuegos, contaminación, auroras, tormentas de arena y polvo, corrientes del océano, etc., son otras informaciones sobre el medio ambiente recogidas por los satélites. Las imágenes obtenidas por los satélites meteorológicos han ayudado a observar la nube de cenizas del Monte Saint Helens y la actividad de otros volcanes como el Monte Etna. El humo de los incendios del oeste de Estados Unidos como Colorado y Utah también han sido monitorizados.
Otros satélites pueden detectar cambios en la vegetación de la Tierra, el estado del mar, el color del océano y las zonas nevadas. En 2002, el derrame de petróleo del Prestige en el noroeste de España fue recogido por el satélite europeo ENVISAT que, aunque no es un satélite meteorológico, dispone de un equipo (ASAR) que puede ver los cambios en la superficie del mar.
El fenómeno de El Niño y sus efectos también son registrados diariamente en imágenes de satélite. El agujero de ozono de la Antártida es dibujado a partir de los datos obtenidos por los satélites meteorológicos. De forma agrupada, los satélites meteorológicos de China, Estados Unidos, Europa, India, Japón y Rusia proporcionan una observación casi continua del estado global de la atmósfera.
El primer satélite meteorológico, el Vanguard 2, se lanzó el 17 de febrero de 1959. Se diseñó para que midiese la capa de nubes, pero debido a su eje de rotación pobre no pudo recoger una cantidad importante de datos útiles.
Se considera al TIROS-1 el primer satélite meteorológico con éxito, lanzado por la NASA el 1 de abril de 1960. El TIROS funcionó durante 78 días y demostró ser mucho más útil que el Vanguard 2. El TIROS sirvió como inicio para el programa Nimbus, cuya tecnología y técnicas han sido heredadas por la mayoría de los satélites de observación de la NASA y la NOAA.

Un robot es una entidad virtual o mecánica artificial. En la práctica, esto es por lo general un sistema electromecánico que normalmente es conducido por un programa de una computadora o por un circuito eléctrico. Este sistema electromecánico, por su apariencia o sus movimientos, ofrece la sensación de tener un propósito propio. La independencia creada en sus movimientos hace que sus acciones sean la razón de un estudio razonable y profundo en el área de la ciencia y tecnología. Limpieza y mantenimiento del hogar son cada vez más comunes en los hogares. No obstante, existe una cierta ansiedad sobre el impacto económico de la automatización y la amenaza del armamento robótico, una ansiedad que se ve reflejada en el retrato a menudo perverso y malvado de robots presentes en obras de la cultura popular. Comparados con sus colegas de ficción, los robots reales siguen siendo limitados.
El gran público conoció la palabra robot a través de la obra R.U.R. (Robots Universales Rossum) del dramaturgo checo Karel Čapek, que se estrenó en 1920.[1] La palabra se escribía como "robotnik".
Sin embargo, no fue este autor Čapek quien inventó la palabra. En una breve carta escrita a la editorial del Diccionario Oxford, atribuye a su hermano Josef la creación del término.[1] En un artículo publicado en la revista checa Lidové noviny en 1933, explicó que originalmente los quiso llamar laboři (del latín labor, trabajo). Sin embargo, no le gustaba la palabra y pidió consejo a su hermano Josef, que le sugirió "roboti". La palabra robota significa literalmente trabajo o labor y figuradamente "trabajo duro" en checo y muchas lenguas eslavas. Tradicionalmente robota era el periodo de trabajo que un siervo debía otorgar a su señor, generalmente 6 meses del año.[2] La servidumbre se prohibió en 1848 en Bohemia, por lo que cuando Čapek escribió R.U.R., el uso del término robota ya se había extendido a varios tipos de trabajo, pero el significado obsoleto de "servidumbre" seguiría reconociéndose.[3] [4]
La palabra robótica, usada para describir este campo de estudio, fue acuñada por el escritor de ciencia ficción Isaac Asimov. La robótica concentra 3 áreas de estudio: la mecatrónica, la física y las matemáticas como ciencias básicas.
Historia
Los primeros autómatas
En el siglo IV antes de Cristo, el matemático griego Arquitas de Tarento construyó un ave mecánica que funcionaba con vapor y a la que llamó «La paloma». También el ingeniero Herón de Alejandría (10-70 d. C.) creó numerosos dispositivos automáticos que los usuarios podían modificar, y describió máquinas accionadas por presión de aire, vapor y agua.[5] Por su parte, el estudioso chino Su Sung levantó una torre de reloj en 1088 con figuras mecánicas que daban las campanadas de las horas.[6]Al Jazarí (1136–1206), un inventor musulmán de la dinastía Artuqid, diseñó y construyó una serie de máquinas automatizadas, entre los que había útiles de cocina, autómatas musicales que funcionaban con agua, y en 1206 los primeros robots humanoides programables. Las máquinas tenían el aspecto de cuatro músicos a bordo de un bote en un lago, entreteniendo a los invitados en las fiestas reales. Su mecanismo tenía un tambor programable con clavijas que chocaban con pequeñas palancas que accionaban instrumentos de percusión. Podían cambiarse los ritmos y patrones que tocaba el tamborilero moviendo las clavijas.
Desarrollo moderno
El artesano japonés Hisashige Tanaka (1799–1881), conocido como el «Edison japonés», creó una serie de juguetes mecánicos extremadamente complejos, algunos de los cuales servían té, disparaban flechas retiradas de un carcaj e incluso trazaban un kanji (caracteres utilizados en la escritura japonesa).[7]Por otra parte, desde la generalización del uso de la tecnología en procesos de producción con la Revolución Industrial se intentó la construcción de dispositivos automáticos que ayudasen o sustituyesen al hombre. Entre ellos destacaron los Jaquemarts, muñecos de dos o más posiciones que golpean campanas accionados por mecanismos de relojería china y japonesa.
Robots equipados con una sola rueda fueron utilizados para llevar a cabo investigaciones sobre conducta, navegación y planeo de ruta. Cuando estuvieron listos para intentar nuevamente con los robots caminantes, comenzaron con pequeños hexápodos y otros tipos de robots de múltiples patas. Estos robots imitaban insectos y artrópodos en funciones y forma. Como se ha hecho notar anteriormente, la tendencia se dirige hacia ese tipo de cuerpos que ofrecen gran flexibilidad y han probado adaptabilidad a cualquier ambiente. Con más de 4 piernas, estos robots son estáticamente estables lo que hace que el trabajar con ellos sea más sencillo. Sólo recientemente se han hecho progresos hacia los robots con locomoción bípeda.
En el sentido común de un autómata, el mayor robot en el mundo tendría que ser el Maeslantkering, una barrera para tormentas del Plan Delta en los Países Bajos construida en los años 1990, la cual se cierra automáticamente cuando es necesario. Sin embargo, esta estructura no satisface los requerimientos de movilidad o generalidad.
En 2002 Honda y Sony, comenzaron a vender comercialmente robots humanoides como «mascotas». Los robots con forma de perro o de serpiente se encuentran, sin embargo, en una fase de producción muy amplia, el ejemplo más notorio ha sido Aibo de Sony.
La robótica en la actualidad
En la actualidad, los robots comerciales e industriales son ampliamente utilizados, y realizan tareas de forma más exacta o más barata que los humanos. También se les utiliza en trabajos demasiado sucios, peligrosos o tediosos para los humanos. Los robots son muy utilizados en plantas de manufactura, montaje y embalaje, en transporte, en exploraciones en la Tierra y en el espacio, cirugía, armamento, investigación en laboratorios y en la producción en masa de bienes industriales o de consumo.[8]Otras aplicaciones incluyen la limpieza de residuos tóxicos, minería, búsqueda y rescate de personas y localización de minas terrestres.

Los robots parecen estar abaratándose y reduciendo su tamaño, una tendencia relacionada con la miniaturización de los componentes electrónicos que se utilizan para controlarlos. Además, muchos robots son diseñados en simuladores mucho antes de construirse y de que interactúen con ambientes físicos reales. Un buen ejemplo de esto es el equipo Spiritual Machine,[11] un equipo de 5 robots desarrollado totalmente en un ambiente virtual para jugar al fútbol en la liga mundial de la F.I.R.A.[12]
Además de los campos mencionados, hay modelos trabajando en el sector educativo, servicios (por ejemplo, en lugar de recepcionistas humanos[13] o vigilancia) y tareas de búsqueda y rescate.

El microscopio (del griego μικρός micrós, ‘pequeño’, y σκοπέω scopéo, ‘mirar’)[1] es un instrumento que permite observar objetos que son demasiado pequeños para ser observados a simple vista. El tipo más común y el primero que se inventó es el microscopio óptico. Se trata de un instrumento óptico que contiene dos o más lentes que permiten obtener una imagen aumentada del objeto y que funciona por refracción. La ciencia que investiga los objetos pequeños utilizando este instrumento se llama microscopía.

En 1665 Robert Hooke observó con un microscopio un delgado corte de corcho y notó que el material era poroso, en su conjunto, formaban cavidades poco profundas a modo de celditas a las que llamó células. Se trataba de la primera observación de células muertas. Unos años más tarde, Marcello Malpighi, anatomista y biólogo italiano, observó células vivas. Fue el primero en estudiar tejidos vivos al microscopio.
A mediados del siglo XVII un holandés, Anton van Leeuwenhoek, utilizando microscopios simples de fabricación propia, describió por primera vez protozoos, bacterias, espermatozoides y glóbulos rojos. El microscopista Leeuwenhoek, sin ninguna preparación científica, puede considerarse el fundador de la bacteriología. Tallaba él mismo sus lupas, sobre pequeñas esferas de cristal, cuyos diámetros no alcanzaban el milímetro (su campo de visión era muy limitado, de décimas de milímetro). Con estas pequeñas distancias focales alcanzaba los 275 aumentos. Observó los glóbulos de la sangre, las bacterias y los protozoos; examinó por primera vez los glóbulos rojos y descubrió que el semen contiene espermatozoides. Durante su vida no reveló sus métodos secretos y a su muerte, en 1723, 26 de sus aparatos fueron cedidos a la Royal Society de Londres.
Durante el siglo XVIII continuó el progreso y se lograron objetivos acromáticos por asociación de Chris Neros y Flint Crown obtenidos en 1740 por H. M. Hall y mejorados por John Dollond. De esta época son los estudios efectuados por Isaac Newton y Leonhard Euler. En el siglo XIX, al descubrirse que la dispersión y la refracción se podían modificar con combinaciones adecuadas de dos o más medios ópticos, se lanzan al mercado objetivos acromáticos excelentes.
Durante el siglo XVIII el microscopio tuvo diversos adelantos mecánicos que aumentaron su estabilidad y su facilidad de uso, aunque no se desarrollaron por el momento mejoras ópticas. Las mejoras más importantes de la óptica surgieron en 1877, cuando Ernst Abbe publicó su teoría del microscopio y, por encargo de Carl Zeiss, mejoró la microscopía de inmersión sustituyendo el agua por aceite de cedro, lo que permite obtener aumentos de 2000. A principios de los años 1930 se había alcanzado el límite teórico para los microscopios ópticos, no consiguiendo estos aumentos superiores a 500X o 1,000X. Sin embargo, existía un deseo científico de observar los detalles de estructuras celulares (núcleo, mitocondria, etc.).
El microscopio electrónico de transmisión (TEM) fue el primer tipo de microscopio electrónico desarrollado. Utiliza un haz de electrones en lugar de luz para enfocar la muestra consiguiendo aumentos de 100.000X. Fue desarrollado por Max Knoll y Ernst Ruska en Alemania en 1931. Posteriormente, en 1942 se desarrolla el microscopio electrónico de barrido.

Un circuito integrado (CI), también conocido como chip, microchip, es una estructura de pequeñas dimensiones de material semiconductor, normalmente silicio, de algunos milímetros cuadrados de superficie (área), sobre la que se fabrican circuitos electrónicos generalmente mediante fotolitografía y que está protegida dentro de un encapsulado de plástico o de cerámica. El encapsulado posee conductores metálicos apropiados para hacer conexión entre el Circuito Integrado y un circuito impreso.
Los CI se hicieron posibles gracias a descubrimientos experimentales que mostraban que artefactos semiconductores podían realizar las funciones de los tubos de vacío, así como a los avances científicos de la fabricación de semiconductores a mediados del siglo XX. La integración de grandes cantidades de pequeños transistores dentro de un pequeño espacio fue un gran avance en la elaboración manual de circuitos utilizando componentes electrónicos discretos. La capacidad de producción masiva de los circuitos integrados, así como la fiabilidad y acercamiento a la construcción de un diagrama a bloques en circuitos, aseguraba la rápida adopción de los circuitos integrados estandarizados en lugar de diseños utilizando transistores discretos.
Los CI tienen dos principales ventajas sobre los circuitos discretos: costo y rendimiento. El bajo costo es debido a los chips; ya que posee todos sus componentes impresos en una unidad de fotolitografía en lugar de ser construidos un transistor a la vez. Más aún, los CI empaquetados usan mucho menos material que los circuitos discretos. El rendimiento es alto ya que los componentes de los CI cambian rápidamente y consumen poco poder (comparado sus contrapartes discretas) como resultado de su pequeño tamaño y proximidad de todos sus componentes. Desde 2012, el intervalo de área de chips típicos es desde unos pocos milímetros cuadrados a alrededor de 450 mm2, con hasta 9 millones de transistores por mm2.
Los circuitos integrados son usados en prácticamente todos los equipos electrónicos hoy en día, y han revolucionado el mundo de la electrónica. Computadoras, teléfonos móviles, y otros dispositivos electrónicos que son parte indispensables de las sociedades modernas, son posibles gracias a los bajos costos de los circuitos integrados
En abril de 1958, el ingeniero alemán Werner Jacobi[1] (Siemens AG) completa la primera solicitud de patente para circuitos integrados con dispositivos amplificadores de semiconductores. Jacobi realizó una típica aplicación industrial para su patente, la cual no fue registrada.
Más tarde, la integración de circuitos fue conceptualizada por el científico de radares Geoffrey Dummer (1909-2002), que estaba trabajando para la Royal Radar Establishment del Ministerio de Defensa Británico, a finales de la década de 1940 y principios de la década de 1950.
El primer circuito integrado fue desarrollado en 1959 por el ingeniero Jack S. Kilby[1] (1923-2005) pocos meses después de haber sido contratado por la firma Texas Instruments. Se trataba de un dispositivo de germanio que integraba seis transistores en una misma base semiconductora para formar un oscilador de rotación de fase.
En el año 2000 Kilby fue galardonado con el Premio Nobel de Física por la enorme contribución de su invento al desarrollo de la tecnología.[2]
Robert Noyce desarrolló su propio circuito integrado, que patentó unos seis meses después. Además resolvió algunos problemas prácticos que poseía el circuito de Kilby, como el de la interconexión de todos los componentes; al simplificar la estructura del chip mediante la adición de metal en una capa final y la eliminación de algunas de las conexiones, el circuito integrado se hizo más adecuado para su producción en masa. Además de ser uno de los pioneros del circuito integrado, Robert Noyce también fue uno de los co-fundadores de Intel Corporation, uno de los mayores fabricantes de circuitos integrados del mundo.[3]
No hay comentarios:
Publicar un comentario